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You can fail to achieve
ecological validity even with
high (statistical) accuracy,
and you can have o )
ecological validity without Statistical validity
high accuracy!
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Development, evaluation, and validation of machine
learning models for COVID-19 detection based on
routine blood tests
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The Elephant in the Machine: Proposing a New Metric

of Data Reliability and its Application to a Medical Case
to Assess Classification Reliability
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NUMBER OF RATERS TO INVOLVE TO GET A LABELLING ERROR UNDER 5%
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ACCURACY OF GROUND TRUTH
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A nomogram
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We proposed a new metric 68 the weighted Utility (wU)
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wU(7,1,5,h) = 1 Z r(x;i) - oy (h(x;)|7(x;)) - 1 Z r(x;i) - sl <oy (h(x;)|7(x;)).
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Intuitively, a decision support is useful if k
the number of times it is right in detecting
a health problem is higher than the

number of times it is wrong so.
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wU (7,1, 8, h)



/ And if: \

G It is optimized to avoid the most
impactful kind of error (at class level)

e It helps you when you need it most
(i.e., most difficult/rarest cases)

e It doesn’t take guesses.
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wU(7,1,5,h) ==
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Intuitively, a decision support is useful if
the nuthber of times it is right in detecting

Nh problem is higher than the
gA\ of times it is wrong so.




The IJMEDI checklist for assessr&ent of medical Al

Authors Reviewers
NA | No | v || OK | mr | MR

Reoquiroment

Problem Understanding

1. Is the study population described, also in torms of I (@) I (@) | (@) ” (@] l (@] I (@] I
inclusion /exclusion criteria (e.g., pationts older than 18 tested for
COVID-19; all inpatients hospitalized for 24 or more hours)? §

2. Is the study design described? (e.g., retrospective, prospective,
cross-sectional [I], obsorvational, randomized control trial [3) §
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3. Is the study setting described? (o.g., ¢ % tertinry hospital; primary },' . :
care ambulatory, nursing home, medical laboratory, R&D laboratory) § A

1. Is the source of data described? (e.g., vlectronic specialty S R
rogistry; laboratory information system; electronic health record; EILSEVIER
picture archiving and communication system) § .

5. Is the medical task roported? (o.g., diagnostic detection,
diagnostic characterization, diagnostic staging, prognosis (on
which endpoint), event prediction, risk stratification, anatomical

e S ——— The need to separate the wheat from the chaff in
6. Ix the «ln!.u m»ll«-tbn.n procoesy described, also in terms of setting-spocific ° ° e

data colloction siraisgien (o6. whether body Lemperstarms e wineneed | MY @jCal INfOrmatics

of a specific diagnostic hypothesis)? Any consideration about data quality

is apprecinted, e.g., in regard o comploteness, plausibility, and robustness
with respect to upcoding or downcoding practices

Federico Cabitza &, Andrea Campagner

Data Understanding

7. Aro the subject domographics described in torms of C)

1. average age (moan or median);

2. age variability (standard doviation (SD) or inter-quartile
range (IQR));

3. gender breakdown (e.g., 556% fomale, 44% male, 1% not
reported); §

4. main comorbidities;

5. ethnic group (e¢.g., Native American, Asian, South East

Asian, African, African American, Hispanic, Native

Hawailan or Other Pacific

To discover more, please
refer to the new ITMEDI
checklist for assessment of

medical AT
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L'importanza di investire in ponti e... costruttori di ponti!
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